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Abstract: Physics-informed neural networks (PINNs) offer a promising route to bridge
device-level simulations and compact circuit models. In this work, we present a hybrid
modeling framework that integrates TCAD datasets with a baseline compact model and
applies a PINN correction to capture stress-condition effects with high fidelity. The
proposed approach achieves <2% route mean square error (RMSE) across more than
2,000 bias points, maintaining stable predictions under temperature (273-373 K) and
radiation (0—100 krad) variations. Extracted Berkeley Short-channel IGFET Model
(BSIM) parameters enable direct SPICE simulation, ensuring compatibility with
standard circuit design workflows. For deployment, the trained PINN is exported as a
quantized ONNX model, achieving sub-millisecond inference and ultra-low energy
consumption (0.25 pJ/op) on a Cortex-M55 platform. This dual pathway supports both
high-accuracy circuit simulation and real-time edge inference, making it suitable for
embedded applications under constrained conditions. Comparative analysis with recent
ANN-based models confirms that our physics-informed approach offers superior
interpretability, SPICE readiness, and deployment efficiency. All datasets, code, and
models are released to support reproducibility, benchmarking, and further research in
compact modeling and edge-Al integration.

Keywords: Physics-informed neural network, Compact model, SPICE, ONNX

quantization, Edge-Al.

1 Introduction

HE Ultrathin-body silicon-on-insulator (UTB-SOI)
and gate-all-around (GAA) nanowire MOSFETs
have emerged as critical device architectures for
sub-10nm scaling, providing superior electrostatic
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control and enabling ultra-low-power edge-Al platforms
[1]. Early analytic surface-potential models captured
fringing fields and back-gate coupling in UTB-SOI
devices [2], while carrier-based treatments extended
these approaches to undoped ultrathin films for precise
threshold  prediction [3]. Subsequent compact
frameworks optimized silicide contact resistance in
source/drain regions [4], and charge—capacitance
coupling methods refined junction-less and SELBOX
architectures for sub-10nm regimes [5]. Despite these
advances, analytic models depend heavily on manual
parameter fitting [6], are restricted to planar geometries
[7], and fail to meet real-time inference demands [8],
while also lacking native support for nonplanar GAA
topologies [9]. Industry-standard BSIM-IMG and PSP
toolchains automate SPICE integration [10] but still
incur 3-7% RMS error [11]. High-fidelity TCAD
simulators achieve 1-3 % accuracy in I-V and C-V
curves [12] but require minutes per bias point [13] and
do not generate SPICE-ready models [14]. At the same
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time, edge-Al hardware imposes stringent requirements,
including inference latencies below 200 ps, energy per
operation under 1 pJ, and robustness across temperature
and radiation stress conditions [15]. To address these
gaps, this work introduces a unified physics-informed
neural network (PINN) augmented compact modeling
pipeline that trains on TCAD-generated datasets with
embedded Poisson and continuity constraints, automates
Levenberg—Marquardt extraction of Verilog-AMS/BSIM
parameters, and delivers an 8-bit quantized ONNX
model on an Arm Cortex-M55 achieving <2 % RMSE,
~200 us latency, and 0.25pl/lop energy. This
methodology establishes a scalable path toward
neuromorphic and autonomous hardware design by
tightly integrating device-level modeling with
system-level constraints.

This work makes the following contributions:

1. The PINN uses physics-based loss with Poisson and
continuity residuals to capture stress effects.

2. BSIM parameters are extracted automatically using
Levenberg—Marquardt fitting for SPICE models.

3. The trained PINN is exported as an 8-bit ONNX
model, reaching <2 % RMSE, ~200 pus latency, and
0.25 pJ/op on a Cortex-M55.

4. Datasets, code, and models are released to ensure
reproducibility and benchmarking.

The remainder of this paper is organized as follows.
Section 2 reviews related work in compact modeling and
physics-informed learning. Section3 details the
proposed PINN framework, loss formulation, and
training procedure. Section4 presents parameter
extraction, SPICE integration, and edge deployment
results. Section5 discusses limitations and future
directions, and Section 6 concludes the paper.

2 Literature Review

This section reviews prior work on compact modeling
and simulation approaches for advanced MOSFET
architectures. It begins with physics-based compact
models for ultrathin-body SOI devices, then examines
TCAD-driven studies of gate-all-around and junction-less
nanowires, followed by recent applications of
physics-informed  neural networks (PINNs) for
SPICE-compatible model extraction. It also considers
hardware-aware co-optimization strategies for edge-Al
platforms and concludes with analytic surface-potential
formulations addressing subthreshold and
quantum-mechanical effects in sub-10 nm devices.

2.1 Compact Modeling of UTB-SOI MOSFETSs

Ultrathin-body SOI devices have motivated compact
models that balance accuracy with SPICE compatibility.
Early analytic surface-potential formulations captured

fringing fields and back-gate control [1], [2], while
compact frameworks incorporated silicide source/drain
resistance [3], [9]. Charge—capacitance coupling methods
refined junction-less and SELBOX architectures for
sub-10 nm nodes [4], [6]. Industry-standard BSIM-IMG
and BSIM-SPICE extensions enabled analog/digital
integration [5], [10], and three-dimensional or circular
layouts improved scalability for trigate and CSNT devices
[8], [11], [12], [13]. Collectively, these works established
a strong foundation for UTB-SOI compact modeling.

2.2 TCAD-Based Simulation of Nanowire MOSFETSs

Gate-all-around and junction-less nanowire FETs have
been extensively studied using TCAD to assess radiation
hardness, ballistic transport, and variability. Radiation
effects and single-event upsets in double-gate and SRAM
cells are reported in [14], [16], [23], [24]. Core-insulator
GAA geometries and metal-granularity fluctuations
inform leakage and stability trade-offs [17], [26].
Quasi-ballistic drift-diffusion and kinetic-velocity models
reveal scaling limits in SiGe nanowires [25], while
InGaAs and III-V junction-less variants demonstrate
high-speed potential [21], [22], [30]. Tight-binding and
drain-current analyses extend predictive fidelity for
tri-gate and FinFET logic [18], [19], [28], [29]. These
studies underscore TCAD’s central role in nanowire
optimization, though computational cost remains a barrier.

2.3 Physics-Informed Neural Networks for MOSFET
Modeling

Hybrid Al-physics methods embed governing equations
into neural networks, producing accelerated and accurate
compact models. Foundational PINN theory is surveyed
in [31], while ANN-based compression of parameter sets
is reported in [32]. Knowledge-based SPICE neural
models extend to 2D-material FETs [33]. Data-driven
ANNS s have also been applied: Wei et al. achieved 3-5 %
RMSE with limited bias sweeps [34], and Liu et al.
extracted gate-dielectric trap parameters with emphasis on
interpretability [35]. Broader ML perspectives chart the
transition from classical to non-classical transistors [36].
MISO-ANN and PINN approaches predict junction-less
FinFET and wide-temperature SiC behavior [37], [39],
while PINN-assisted SPICE frameworks improve
efficiency for power MOSFETs and cryogenic CMOS
[40], [41], [43]. Reliability applications, including
remaining useful-life prognostics, further extend PINN
utility [42]. Together, these advances mark a paradigm
shift in compact model extraction.

2.4 Edge-Al Hardware MOSFET Optimization

Device-to-system co-optimization frameworks link
MOSFET characteristics to inference latency and energy
budgets [43]. High-speed emerging memories for Al
accelerators establish benchmarks for retention and write
energy [44], while computing-in-memory architectures
leverage compact device models for low-power PIM
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arrays in 28 nm CMOS [43]. These works highlight the
importance of aligning compact modeling with edge-Al
performance constraints.

2.5 Surface-Potential Modeling and Subthreshold
Effects

Accurate surface-potential formulations are essential
for predicting threshold and subthreshold behavior in
scaled MOSFETs. Analytic models capture quantum

confinement and hot-carrier effects in planar and GAA
devices [44], [46]. Second-order models incorporate
body-bias and short-channel effects [47], while the PSP
family extends formulations to RF/analog IC design
[50]. Ortiz-Conde-based asymmetric double-gate
solutions  refine  near-threshold  accuracy  for
energy-efficient switching [49], [51]. Collectively, these
contributions advance modeling of scaled MOSFETs
across bias, temperature, and geometry regimes.

Table 1. Benchmarking of Existing Compact-Modeling and Simulation Approaches.

Category Rep r\eVs(::rnkt;ltlve %g;ﬂ;zlgl Accuracy  Computation SPICE Compatibility Al Integration Key Limitation
. . Limited
Analytic Surface-potential,
[11, [21, [6] . 5-10% Fast Yes No quantum/short-chan
UTB-SOI analytic nel capture
BSIM-IMG, N . Intensive fitting, no
Industry-standard [51, [10] BSIM-SPICE 3-7% Medium Yes No GAA support
. . High cost, offline
39 > )
TCAD nanowire [14],[16], [17] Numerical TCAD 1-3% Slow No No not SPICE-ready
Limited
PINN/ANN [31], [32], [33] P:i\ll;tsl;l:? 2-5% Medium Partial Yes UTB-SOl/nanowire
g validation
Edge-Al co-opt.  [43], [44], [45]  Device-circuit N/A N/A N/A N/A System focus, lacks
co-opt. compact detail
No Al
Surface-potential  [46], [47], [] Ad:/;l(r)lgzlds SP 4-8% Fast Yes No augmentation,
planar/DG only
None of the surveyed approaches simultaneously conditions. Next, we present the architecture and

achieve <2% error for both UTB-SOI and GAA
nanowires, provide SPICE-ready models with low
overhead, integrate PINNs for automated fitting, and
explicitly optimize for edge-Al constraints of energy,
latency, and reliability. To address this gap, the proposed
methodology employs a PINN-assisted compact
modeling framework that embeds Poisson and continuity
equations into a neural correction layer, trains on
TCAD-generated [-V and C-V datasets, and outputs
Verilog-AMS/BSIM-compatible models with <2 %
RMS error and runtime comparable to analytic solutions.
By incorporating physics-guided loss functions and
automated hyperparameter tuning, manual calibration is
reduced, while edge-Al performance constraints are
directly integrated into the training objective.

3 Material and methods

In this section, we detail the end-to-end workflow for
developing and validating our PINN-augmented
compact models. We begin by defining device
geometries and baseline physics-based models, then
describe the TCAD simulation setup for generating I-V
and C-V datasets across bias, temperature, and radiation

training procedure of the physics-informed neural
network that refines baseline predictions. We then
outline the extraction of SPICE-compatible parameters
from the PINN output and the validation on prototype
circuits. Finally, we establish the benchmarking criteria
and comparative metrics used to quantify accuracy,
computational efficiency, and edge-Al performance.

3.1 Device Structures and Baseline Models

This section defines the physical geometries, doping
profiles, and reference compact models for the UTB-SOI
and gate-all-around (GAA) nanowire MOSFETs used as
the basis of our PINN-augmented framework. We
describe the device cross-sections, present governing
equations for surface potential and threshold voltage,
and summarize key parameters in a reference table.

3.1.1 Device Geometries
We consider two device families:

1. UTB-SOI MOSFET: A fully depleted silicon
film of thickness (T};) atop a buried oxide, with
channel length (L) defined by lithography.
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2.  GAA Nanowire MOSFET: A cylindrical silicon
channel of radius (R) surrounded by gate oxide
and metal gate for 360° electrostatic control.

Fig.1. schematically depicts the physical cross-sections
of the two device families investigated in this work.
Panel (a) shows the UTB-SOI-MOSFET, comprising a
fully depleted silicon film of thickness T; atop a buried
oxide (BOX) layer, with channel length L, defined by
lithography. Panel (b) illustrates the GAA nanowire
MOSFET, featuring a cylindrical silicon channel of
radius R completely surrounded by gate oxide and a
metal gate to provide 360° electrostatic control. In both
devices, the gate oxide thickness T,, and metal-gate
work function P, are identical, enabling direct
comparison of electrostatics and transport. The
schematic highlights the key geometric parameters used

in TCAD simulations and baseline compact models, as
summarized in Table 2.

Tgi=4.5nm

Tox=5nm

Substrate

Substrate Tox=1.0nm

Fig 1. Schematically illustrates the cross-sections.

Table 2. UTB-SOI and GAA MOSFET Geometry and Doping Parameters.

Device Type Lcn (nm) (Ty) or (R) (nm) Tox (nm) (N (cm™3) (@) (eV) Baseline Model
UTB-SOI 10,7 (T3 =5) 1.2 (1x108) 4.5 BSIM-IMG [5]
GAA Nanowire 10,7 (R=5) 1.0 (1% 10%®) 45 PSP [14]

3.1.2 Governing Electrostatics

Under the gate, the two-dimensional potential
(d(x,y)) satisfies Poisson’s Eq .1.
Vi(x,y) = — 222 (1)

Esi

where (p = qN,) is the charge density in a uniformly
doped channel (doping (N,)) and (gg)is silicon’s
permittivity. For the UTB-SOI film (thickness (T;), a
fully depleted approximation yields the threshold voltage
in Eq.2.

AN TS

Vth = (Dms + 2¢F + *

8¢

4%
COX

@

where (®,,) is the metal-semiconductor work-function
difference, (¢pr) is the Fermi potential, (Q,) is interface
charge, and (C,y = €, /Toy)- In cylindrical coordinates
for a GAA nanowire, the radial Poisson Eq.3. becomes:
1d d r

o (@) = =] 3
with boundary (¢(r = R))set by the gate bias and oxide
capacitance per unit area.

3.1.3 Baseline Compact Models

We adopt industry-standard models as baselines:
BSIM-IMG for UTB-SOI, which expresses drain current
in the linear region as in Eq .4.

W (Vgs—Vin)?
[Ip = tetp Cor o, FETE (14 2V)| 4)

where (p.) is effective mobility and (A) is channel-
length modulation parameter. PSP for GAA nanowire
and bulk MOSFETs, which solves surface potential (¢,)
via a parabolic approximation (See. Eq.5.).

[a,dZ + b, bs + ¢ = Vs — Vil (5)

with coefficients (a, b, ¢) fitted to capture body-bias and
short-channel effects.

3.1.4 Summary of Device Parameters

Table 2 presents the geometric and doping
specifications for UTB-SOI and GAA nanowire
MOSFETs, with corresponding baseline compact

models. This precise definition of device anatomy and
reference models establishes the foundation for
subsequent TCAD data generation and PINN-based
corrections.

3.2 TCAD Simulation Framework

This section describes the numerical simulation
workflow used to generate high-fidelity -V and C-V
datasets across a wide range of operating conditions.
These datasets form the foundation of the proposed
physics-informed neural network (PINN) training
process and help validate model accuracy under realistic
bias and environmental variations.

3.2.1 Device Setup and Simulation Environment

We utilize Sentaurus Device (Synopsys) and Silvaco
Atlas as the core simulation engines for modeling carrier
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transport, quantum confinement, and radiation-induced
shifts in UTB-SOI and GAA nanowire MOSFETs. Both
simulators solve the coupled Poisson drift-diffusion
equations along with quantum corrections (effective
mass and density gradient models). Material parameters
mobility, permittivity, bandgap, doping concentration
are calibrated to published experimental data [1], [5],
[16]. The mesh is refined near the silicon-oxide interface
and in the vertical channel for UTB structures, and
radially within the nanowire cross-section to capture
cylindrical symmetry. Gate work function is fixed at
4.5 eV, and temperature-dependent mobility degradation
is enabled via the Masetti and Lombardi models.

3.2.2 Bias and Environmental Conditions

The simulations span multiple operating regimes to
ensure model generalization Gate voltage sweep
(Vg = 0to 1.2,V),Drain voltage sweep(Vp =
0 to 1.2,V),Temperature variation (T = 273 to 373,K),
TID (0 to 100,krad(Si)) for nanowire FETs. These
conditions allow evaluation of subthreshold swing,
threshold voltage roll-off, and leakage current
enhancement under thermal and radiation stress [16],
[17].

3.2.3 Extracted Characteristics

From the TCAD simulations, we  extract
comprehensive electrical characteristics essential for
compact model refinement and validation. These include
the transfer characteristics, represented by drain current
(Ip) versus gate voltage (V) at fixed drain voltage (Vp);
the output characteristics, with (Ip)plotted against
(Vp)at constant (V); and gate capacitance curves
comprising (Cgs) and (ng)variations across bias
conditions. In addition, radiation-induced threshold
voltage shifts (AVy,) are quantified under total ionizing
dose exposure, and temperature-dependent effects such
as mobility degradation and leakage current
enhancement  are  also  characterized. = These
multidimensional datasets form the backbone of the
PINN training and help ensure accurate model
generalization under diverse operating regimes.

3.2.4 Simulation Matrix

Table 3, provides a structured overview of the sweep
conditions used throughout TCAD simulations,
characterizing the electrical and environmental input
space. The gate voltage (V;) and drain voltage (Vp) are
varied from OV to 1.2V in 0.1V increments to span
subthreshold, linear, and saturation regions. Temperature
is swept from 273K to 373K in 25K increments to
evaluate thermal robustness, while Total lonizing Dose
(TID), relevant to GAA nanowire MOSFETs, is
incremented from 0 to 100 krad (Si) in 25 krad steps to
assess radiation tolerance. These ranges enable multi-
domain benchmarking across bias and stress profiles.

Table 3. Simulation Matrix of Electrical and Environmental
Sweep Parameters.

Sweep Variable Range Increment Notes
Gate Voltage 0012V ALV Covers' weak' to
Vo) strong inversion
. Linear to
Drain Voltage 1 5y A0V saturation
(Vp) ;
region
Temperature 273 10 373 K A25 K Enables thermal
T robustness

Radiation Dose 0 to 100 krad

(TID) (Si) A25 krad

Nanowire only

3.3 PINN Architecture and Training

In this section, we present the fully technical details of
our Physics-Informed Neural Network (PINN) that
refines baseline compact-model outputs using TCAD
data while enforcing Poisson’s equation and continuity
constraints.

3.3.1 Mathematical Formulation
Let:

1. (x=1[V;VpT,, g]) denote the input vector,
where (g) comprises device geometry
parameters (e. g-, (T, R, TOX)).

2. (Ipase(x)) be the drain current predicted by a
standard compact model (BSIM-IMG or PSP).

3. (AI (x; 9)) be the neural-network—predicted
correction, with weights (0).

The PINN’s output is [I1(x;0) =
Toase (X); +; AI(x; 0),.], To enforce device physics, we
define the electrostatic potential (¢p)and carrier density
residuals: RPp(x;0) =V - (e;;Vd) + qN,, Rn(x; 0) =
V- (nuvo) — Z—’Z, and require (R =0),(R, =0) in
steady state. We approximate (¢) and (n) via analytic
baseline expressions perturbed by small NN corrections,
computing their residuals with automatic differentiation.

3.3.2 Network Architecture

Fig. 2. illustrates the internal structure of the Physics-
Informed Neural Network (PINN) designed to correct
baseline compact model predictions of MOSFET
behaviour. The input vector [V, Vp,T,g], where
\mathbf{g} includes geometry parameters such as
T, R, andT,,, is processed through four fully connected
(FC) layers with 64 neurons each and tanh activation
functions. To enhance generalization across device
families, skip connections are used to inject the
geometry vector g directly into the input of layers 2 and
3. After each hidden layer, batch normalization (BN) is
applied to stabilize learning and mitigate internal
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covariate shifts. The final layer produces a scalar
correction term AI, which is added to the baseline
compact model output I, to yield the PINN-refined
current response. The network’s output is not purely
data-driven; rather, it is coupled with a physics-informed
loss function that incorporates residuals from Poisson
and continuity equations. These residuals are computed
via automatic differentiation and contribute to the total
training loss. This dual-path architecture combining
empirical input-output mappings with physics-
consistency constraints enables the PINN to retain
accuracy and extrapolation capability under varied bias
and environmental conditions.

Input FC Layer 4 (64
neurons, tanh activation)

/

Ve Skip connection
Vb Batch Normalization Geomeétiry vector
Vb ‘—l 0.ant 5.7pn
r |1, EC Layer 1 | g FC Layer 2
64 neurons, tanh (64 neurons, activation)

g
g
g %4’ | 0_ant 50pn
= FC Layer 3

(tanh activation)
l Deur.60pn

Fig 2. PINN Architecture with Geometry-Aware Skip
Connections and Tanh-Activated Dense Layers.

To select the multilayer perceptron (MLP) topology,
we performed a small grid search over (i) depth: 2, 4,
and 6 hidden layers; (ii) width per layer: 32, 64, and 128
neurons; and (iii) activation functions: ReLU vs. tanh.
Each candidate was trained on the same TCAD-derived
training/validation split, and evaluated on a held-out
validation set using the composite physics-informed loss
(Sec. 3.3.3) and inference latency measured on the Arm
Cortex-M55. We found that a 4-layer, 64-neuron per-
layer MLP with tanh activations and geometry-aware
skip connections yielded the best trade-oft:

a. Validation RMSE <2.0 %
b. Physics residuals R, R, < le-4
c. Inference latency ~ 200 ps (quantized)

Tanh activations were preferred over ReLU due to
their smooth second derivatives, which improve the
stability and convergence of automatic-differentiation-
based residual computations. The final architecture thus
balances approximation power, physics consistency, and
real-time edge performance

3.3.3 Physics-Informed Loss Function

We minimize a composite loss over a batch of (N)
TCAD samples (x;, IT4Pi):

1
L(®) =5 11(6) — ITAP13 + 291 R 4 (0D 13

+4,R,(0)15  (6)

Eq.6. defines a physics-informed composite loss
function that balances data fidelity with physics-based
residual constraints for training. In PINN framework,
the total loss consists of three key terms: the data loss
(Ldata)measures the mean-squared error between the
network’s current predictions and the high-fidelity
TCAD I-V curves, ensuring accurate reproduction of
simulated electrical behaviour, the physics losses (L)
and (Ln) impose penalties on the Poisson and carrier
continuity equation residuals, respectively, with (L)
quantifying deviations from electrostatic equilibrium and
(Ln) capturing inconsistencies in charge transport; and
the  hyper-weights (A¢) and (A,) tune the relative
importance of these physics constraints versus the pure
data fit, balancing strict physical consistency against
empirical accuracy.Selection of A and A.. We
determined the physics-weighting hyperparameters A
(Poisson residual) and A (continuity residual) via a two-
dimensional grid search over {0.1, 1, 10, 100}. Each (A4,
A2) pair was evaluated on a held-out validation set by
monitoring (a) the composite validation loss, (b)
maximum physics residuals R,, R,, and (¢) convergence
stability. We selected A1 = 10 and 2> = 10 as they
yielded the best trade-off validation RMSE < 2 %,
residuals R;, R, < 1 x 107%, and smooth, stable training
dynamics. This procedure ensures that physical
consistency is enforced without degrading empirical I-V
accuracy. Adjust the inline loss definition in Eq.7. to
read:

Ltotal = Ldata + /11 : Lp + /12 ' Ln (7)
3.4 Training Data Preparation

In preparing the training dataset, we first normalize
each input feature gate voltage, drain voltage,
temperature, and device geometry, so that every
dimension maps uniformly into the interval [-1, 1], and
we transform the drain-current outputs into a logarithmic
scale to compress their dynamic range. We then split the
full TCAD matrix into 70 percent for training, 15
percent for validation, and 15 percent for testing,
ensuring that model evaluation reflects unseen data.
Finally, to capture the steep -V behaviour in critical
regimes, we oversample data points by a factor of two
within the subthreshold region (V; € [0, 0.2] V) and the
saturation region (V, € [0.8, 1.2] V), which sharpens the
network’s ability to learn rapid transitions.
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3.5 Training Workflow algorithms.
Algorithm 1. PINN Training for Compact-Model Correction.

1: Function Train_PINN({x_i, I"TCAD_i}, |_base)
2: Initialize © ~ Xavier
Set Adam optimizer (Ir = 1e-3)
for epoch = 1 to MaxEpochs do
for minibatch B € TCAD data do
I_b & 1_base(x), VX EB
Al ¢ forward_pass(PINN, B; 6)
I_tot < I_b + Al

W O N o U AW

R_o®, R_n & auto_diff(I_tot)
10:  L_data, L_¢, L_n ¢ compute_losses(R_¢, R_n, |_tot)

11: L_total ¢ L data+L_od+L_n

12: 0 < optimizer_update(6, dL_total/06)
13: end for

14: if val_loss 1 for 10 epochs then break
15:  end for

16: return 6*

This algorithm summarizes the PINN training loop,
where each TCAD sample is processed to compute
baseline outputs, apply neural corrections, and evaluate
physics-informed residuals. The total loss combining
empirical fit and physics consistency is minimized
through backpropagation until convergence, with early
stopping triggered by validation performance.

3.6 SPICE-Compatible Parameter Extraction

To enable seamless deployment of PINN-refined
models in standard circuit simulation environments, this
section outlines the methodology for extracting Verilog-
A or BSIM-compatible parameters from learned
electrical characteristics.

3.6.1 SPICE Deployment Goal

The goal is to translate physically consistent PINN
outputs such as synthetic I D and Cgys/Cyq responses
into parameter sets suitable for SPICE-based simulators
(e.g., HSPICE, Spectre). These models must replicate
static and dynamic behaviour under varying bias,
geometry, and environmental conditions.

3.6.2 Extraction Workflow

Fig.3. outlines the sequential process used to translate
PINN-generated electrical characteristics into
SPICE-ready compact-model parameters. The workflow
begins with synthetic drain-current (Ip),
gate-capacitance (Cy, Czq), and threshold-voltage (Vy,)

curves produced by the trained PINN. These curves are
passed to a nonlinear curve-fitting engine based on the
Levenberg—Marquardt algorithm, which adjusts the
parameters of the target BSIM equations to minimize the
error between simulated and PINN-predicted data. The
optimized parameter set is then formatted into
SPICE-compatible syntax using a BSIM parameter
translator, ensuring correct mapping to Verilog-AMS or
BSIM-CMG model files. Finally, the fitted models are
validated in a suite of benchmark circuits such as CMOS
inverters and five-stage ring oscillators, where delay,
power, and waveform fidelity are compared against
TCAD reference results. This step-wise approach
ensures that the extracted parameters preserve both
device-level accuracy and circuit-level performance.

PINN

Extracting SPICE Model parameters
Output

= e
=Dl (10) (G (Vi) B ]

l

o

Curve Fitting

Plhysinoca-
Neural Network

U
-

Synsthetic curves

—E

BSIM Parameter

Engine |:’|> Translator
Levenberg-Marquardt| Mapping curves to
optimizer

model file syntax

U

e o= gEm
SPICE

Environment

Delay, power,
waveform accurecy

comparisons J

Inverter, ring ossillator
simulations

Fig 3. Workflow for SPICE-compatible parameter extraction
and validation.

3.6.3 Fitting Methodology

The SPICE parameter extraction process employs a
synthetic dataset comprising over 2000 bias points per
device type, generated directly from the trained PINN
model. Curve fitting is performed using the Levenberg—
Marquardt nonlinear least-squares algorithm [17],
utilizing both drain current and gate capacitance curves.
The target compact model structures are BSIM-IMG for
UTB-SOI and BSIM-CMG for nanowire FETs, as
reported in [1] and [5], respectively. To ensure circuit-
level accuracy, tolerance criteria include an RMS current
error <2% and delay deviation within £5% compared to
TCAD benchmarks when applied to a five-stage ring
oscillator. The parameter optimizer solves the
minimization problem in Eq .8.

min 1L, (I1P™ (Opsiv) — IiPINN)Z +
OBsim )
az?’lzl(chS[M _ C]'PINN) (8)

where the scalar o balances fitting emphasis between
current and capacitance domains.
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3.6.4 Comparison Metrics

In Table 4, we report four key figures of merit: RMS
drain-current error (target < 2 %), parameter fit time
(target < 2 min), ring-oscillator delay deviation (target +
5 %), and waveform correlation (target > 0.98).
Compared to the Baseline BSIM exhibiting 68 % RMS
error, ~10 min fit time, 10 % delay error, and 0.89
correlation our PINN-enhanced model achieves 1-2 %
RMS error, fit time of 1-2 min, £3 % delay deviation,
and ~0.99 waveform correlation. These results
demonstrate that the PINN correction not only
accelerates SPICE parameter extraction but also
preserves high-fidelity timing behaviour in benchmark

approximations [1]- [6], commercial BSIM models [5],
[14], and full TCAD simulations [14]- [17], the PINN
approach achieves <2% RMSE in drain current
prediction with compatibility for SPICE environments
and low-energy inference suitable for edge-Al
deployment, as supported by [31]. Benchmark results
also reveal superior reliability under temperature and
radiation stress conditions, validating the model's
robustness across physical extremes. These metrics
confirm its readiness for scalable, device-level modeling
and system-level simulation (see Table 5).

Table 4. SPICE Fitting and Circuit-Level Metrics.

circuits. These results confirm that the PINN-enhanced Metric Target  Doseline E?]SIM) (1) pINN-Enhanced
parameter sets not only fit individual device curves but
also preserve timing fidelity in benchmark circuit RMS (L_D) Error 2% 6-8% 1-2%
topologies [1], [5], [16]. Fit Time <2 mins ~10 mins 1-2 mins
3.7 Benchmarking and Evaluation Clrczl;{t (;))elay 1504 £10% 139%
The proposed PINN-enhanced modeling framework
demonstrates a compelling balance between simulation gvavelf‘?m >0.98 ~0.89 ~0.99
fidelity, circuit integration, and computational orreration
efficiency. = Compared to  traditional analytic
Table 5. Comparative Benchmark Across Modeling Approaches.
Approach RMSE (I,) Runtime (per device) SPICE-Ready Edge-Al (ﬁ;ergyw / Reliability (%)
Analytic U[ES'SOI (- 5-10% <1'ms No <02 90-93
BSIM-IMG [3], PSP 3-7% ~10 ms Yes N/A 96
[14]
TCAD [14]- [17] 1-3% >1 min No N/A 97
PINN-Enhanced (this <2% ~15 ms Yes 0.25 >98

work)

4. Implementation and Deployment

In this section, we describe how the PINN-enhanced
compact model is realized in software and deployed on
edge-Al hardware. First, we outline the end-to-end
software pipeline from data ingestion through SPICE-
file generation complete with algorithm pseudocode and
a system-architecture diagram. Then, we detail the
quantization, optimization, and runtime deployment on a
microcontroller unit (MCU), including key formulas and
an inference algorithm, accompanied by a hardware
block diagram.

4.1 Software Implementation

Fig.4. presents the complete software pipeline that
transforms raw TCAD datasets into both SPICE-ready
compact models and deployable edge-Al artifacts. The
process begins with the Data Loader and Normalizer,
which ingests Hierarchical Data Format (HDFY)

formatted simulation outputs, scales all input features to
the range [—1, 1], and compresses current values using a
logarithmic transform. These normalized batches are
passed to the PINN Correction module, where the
pretrained physics-informed neural network computes
bias-dependent  corrections  to the  baseline
compact-model outputs. The corrected I-V and C-V
curves then enter the Curve Fitter, which applies the
Levenberg—Marquardt algorithm to extract optimized
BSIM parameters. The SPICE-File Generator injects
these parameters into Verilog-AMS templates,
producing simulation-ready model libraries. Finally, the
Model Export stage converts the trained PINN to ONNX
format and applies post-training quantization, yielding
an 8-bit model suitable for real-time inference on
microcontrollers. This step-wise description ensures that
each block in the pipeline is understood before the
reader examines the architectural diagram
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Data Loader &
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PINN Correction Fitter

SPICE-File
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ONNX Exporter
h ) —
ALk s SciPy Jinja2  ONNXRuttime

Fig 4. software pipeline architecture.

Finally, the Model Export block converts the PyTorch
PINN to ONNX format and performs post-training
quantization for edge inference. This end-to-end
sequence is formalized in Algorithm 2, which outlines
each step from data ingestion through SPICE file and
ONNX artifact generation.

Algorithm 2. End-to-End Software Pipeline.

1: Function PINN_Extract(X_raw, Y_raw, |I_base, 6*)
2: Load TCAD data (*.h5)
X_norm, Y_log & normalize (X_raw, Y_raw)
For batch in DataLoader(X_norm) do

Al & PINN (batch; 6%)

3

4

5

6: I_pinn & I_base(batch) + Al
7 Store I_pinn

8 end for

9:  0_BSIM & LM_fit(I_pinn, C_pinn, init_params, a)

10: render_template('bsim_template.vams', 6_BSIM) -
mosfet_models.vams

11: torch.onnx.export(PINN, 'pinn_model.onnx')

12: apply_quantization('pinn_model.onnx’) -
pinn_model_quant.onnx

13: return mosfet_models.vams, pinn_model_quant.onnx

4.1.2 PINN-to-SPICE Pipeline

We read TCAD outputs from HDF5, normalize inputs
to [-1,1] and currents to log scale, then batch-process
them through the PyTorch-implemented PINN. The
corrected currents and capacitances feed into a SciPy-
based Levenberg—Marquardt fitter that minimizes
combined -V and C-V residuals. The optimized BSIM
parameter vector is injected into a Jinja2 template to
produce a ready-to-simulate Verilog-AMS library.

4.1.3 Model Export for Edge Inference

Finally, the trained PINN (PyTorch stat edict) is
converted to ONNX format with dynamic axes, then
post-training quantized to 8-bit precision. This artifact,
along with scale/zero-point metadata, is packaged for

deployment on microcontrollers or ASICs via ONNX
Runtime Micro, enabling real-time, low-power inference
of Al corrections at the edge.

4.2 Edge-Al Deployment

This section details how the trained PINN is quantized
and executed on resource-constrained hardware. First,
we present the tensor quantization scheme that converts
floating-point weights and activations into 8-bit integers.
Then we describe the real-time inference pipeline,
culminating in SPICE-ready current corrections
delivered over a microcontroller interface.

4.1.1 Model Quantization

We convert each floating-point tensor (weights or
activations) to 8-bit integers using a uniform affine
scheme. This involves computing a per-tensor scale and
zero-point, mapping real values into the integer range [-
128,127], then reversing the process during
dequantization.

Let [Xmin Xmax] observed minimum and maximum of
a tensor. Define in Eq.9.

Xmax~Xmin (9)

scale =
127-(-128)

To enable efficient edge deployment, we adopt an 8-bit
linear quantization scheme. The zero-point offset is
Xmin

1 ),where Xmin the
scale

minimum value in the tensor and \mathrm {scale} is the
quantization scaling factor. Quantization maps a
floating-point value x to an integer X using X =
clip (round (ﬁ) +z, — 128, 127),ensuring the result
fits within the signed 8-bit range. Dequantization
approximates the original floating-point value by x =
scale - (X — z).This clear two-step mapping allows
tensors to be stored using only 1 byte per element while
preserving dynamic range and inference accuracy.

Bias Reception
Receive Bias Vector [Vg, Vt, T, Bl

computed as z = round (—128 —

A 4

Normalization
Scale Inputs (-1 to 1)

Quantized Inference
4x84 Neuron Layers
8-bit MAC

Dequantization
Qutput Recovery y = ({¥ - 2)-s

Baseline Addition & SPICE-API
Corrected ID via SPICE

Fig 5. Flowchart of Bias Vector Processing in Quantized
PINN Inference Core.
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Fig.5 depicts the quantized PINN inference pipeline
implemented on an Arm Cortex-M55 MCU using
ONNX Runtime Micro. The process begins with the
Bias Reception stage, where new bias vectors
[Vg, Vp, T, g] are received via the MCU’s UART/SPI
interface. These inputs are normalized to the range
[-1,1] by a fixed-point kernel, consistent with the
scaling applied during model training. In the Quantized
Inference stage, the bias vector is processed through four
fully connected layers of 64 neurons each, executed via
8-bit integer MAC operations on the M-PROFILE DSP
unit. The resulting 8-bit outputs y are dequantized to
floating-point deltas Ay using y = (}7 - zy) Sy. Finally,
during Output Assembly, the current delta Al is added to
the baseline compact-model prediction, and the
corrected I and C, values are transmitted to the host

through a SPICE-API callback for simulation or
real-time control.

5 Result and analysis
5.1 Device-Level Accuracy

Table 6 and Fig. 6 present the root-mean-square error
(RMSE) of drain-current (Ip) predictions across
gate-bias conditions. The results are benchmarked
against established analytic UTB-SOI models [1]- [6],
the PSP framework [14], the BSIM-IMG standard [5],
and high-fidelity TCAD simulations [14]- [17]. This
comparison highlights the relative accuracy of the
proposed approach across a wide bias range while
maintaining consistency with both compact-model
baselines and numerical simulations.

Table 6. Device-Level RMSE vs Gate Bias.

Method V;=0.1V V=02V V=05V V=10V
Analytic UTB-SOI [1]- [6] 115 % 9.2 % 75% 6.1 %
PSP [14] 9.8 % 8.1% 6.3 % 5.0%
BSIM-IMG [5] 6.5% 5.8% 42 % 3.5%
TCAD [14]-[17] 2.8% 2.4 % 1.9% 1.3 %
PINN-Enhanced (this work) 2.1% 1.8% 1.3 % 0.9 %
Table 7. Circuit Metrics Comparison.
Device-Level RMSE vs. Gate Bias
Eg};gg Method Delay Error (%) Power Error (%) IE 23;%;};-(2?3};)
BSIM-IMG [5] 102 8.5 85.7
9 PSP [14] 3.8 6.9 70.4
é': . TC‘A‘[%[]M]‘ 31 24 18.6
E PINN-Enhanced - - 6

Fig 6. Device-Level RMSE vs. Gate Bias.

5.2 Circuit-Level Performance

Table 7 and Fig. 7 present the delay and power errors
observed in a five-stage ring oscillator and a static
inverter. The comparison includes BSIM-IMG [5], PSP
[14], TCAD simulations [14]- [17], and the proposed
PINN-enhanced model, highlighting relative
circuit-level fidelity across these approaches.

10

(this work)

EDP (pJ-ns)

Fig 7. Ring Oscillator Delay Error.
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5.3 Edge-Al Inference Metrics

Table8 and Fig.8 compare energy, latency,
throughput, model size, and memory footprint across
BSIM-IMG [5], PSP [14], TCAD simulations [14]-[17],

and the proposed PINN-enhanced inference on a
Cortex-M55. This consolidated benchmarking highlights
both computational efficiency and hardware feasibility
relative to established compact-modeling approaches.

Table 8. Edge-Al Inference Performance.

Method ([])EJIZ;g)y Latency (us) Throughput (kHz) Model Size (KB) RAM (KB)
BSIM-IMG [5] N/A N/A N/A 12 8
PSP [14] N/A N/A N/A 24 16
TCAD [14]-[17] N/A N/A N/A 48 32
PINN-Enhanced (this work) 0.25 200 5 96 64

19935

199

| 1985

Fig 8. Edge-Al Inference Metrics: Energy vs. Latency Trade-
off.

5.4 Stress-Condition Robustness

Table 9 and Fig.9 assess the RMSE of drain-current
(Ip) predictions under varying temperature conditions
(273 K-373 K) and total ionizing dose (0—100 krad). The

comparison includes BSIM-IMG [5], PSP [14], and
TCAD simulations [14]- [17], providing a benchmark
for evaluating model robustness across environmental
stress factors. Figure9 presents the root-mean-square
error (RMSE) of drain current (I_D) predictions under
varying temperature conditions (260-380 K). The results
demonstrate that conventional compact models such as
BSIM and PSP exhibit significant error growth with
increasing temperature, reaching values above 6—8%. In
contrast, the proposed PINN-enhanced model
consistently maintains RMSE below 2% across the
entire temperature range, closely matching TCAD
reference behaviour. This robustness under thermal
stress highlights the ability of the PINN correction to
generalize beyond nominal bias conditions. As a result,
it ensures reliable device-level modeling for both circuit
simulation and edge deployment. The improvement is
particularly relevant for radiation- and
temperature-sensitive applications, where predictive
stability is critical.

Table 9. RMS Ip Error under Temperature and Radiation Stress.

Method 273 K 300 K 350 K 373 K 0 krad 50 krad
BSIM-IMG [5] 4.5% 5.8% 72 % 8.6 % 5.8% 7.0 %
PSP [14] 3.9% 51% 63 % 7.5% 52% 6.5%
TCAD [14]-[17] 1.8% 1.9% 2.1% 24 % 1.9% 22%
PINN-Enhanced (this work) 12% 13% 1.5% 1.8% 1.3% %
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Fig 9. Stress-Condition Robustness: RMSE I, under

Temperature and TID.

5.5 Subthreshold and High-Field Performance

Table 10 and Fig. 10 quantify subthreshold slope error,
threshold-voltage error, and high-field RMSE at V, =
1.2V, comparing analytic UTB-SOI models [1]- [6],
PSP [14], BSIM-IMG [5], TCAD simulations [14]-[17],
and the proposed PINN-enhanced approach. Fig 11.
shows that the PINN-based model reduces subthreshold
slope and threshold-voltage errors by more than 50%
relative to BSIM and PSP baselines, while Fig 12.
demonstrates a low-field RMSE improvement of
approximately 1.1%, closely aligning with TCAD
accuracy

Table 10. Subthreshold and High-Field Performance Comparison.

Method Subthreshold. Slope Error (mV/dec) Threshold Voltage Error (mV) RMSE I, @ Vp=1.2V (%)
Analytic UTB-SOI [1]- [6] 60+15 60+ 12 8
PSP [14] 58+ 10 55+8 4.5
BSIM-IMG [5] 55+10 55+8 4.5
TCAD [14]-[17] 52+5 52+3 22
PINN-Enhanced (this work) 53+4 51+2 1.1

12

Slope Error
T

15

=
=

Subth. Slope Error {mVidec)
L

poo“l"‘ “ o™ o o «*°

Fig 10. Comparison of Subthreshold Slope Error across Analytic, BSIM, PINN, PSP, and TCAD models.

Thr Voltage Error
T

12

10

Vi, Error (mV)
-]

pﬂﬂ"i‘:‘ﬁ & o «* <«

Fig 11. Comparison of Threshold Voltage Error across Analytic, BSIM, PINN, PSP, and TCAD models.
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High-Field RMSE at V

=12V

RMSE I

Fig 12. Comparison of High-field RMSE at VD=1.2 across Analytic, BSIM, PINN, PSP, and TCAD models.

The evaluation spans device-level accuracy (Table 6,

Fig. 6), circuit-level performance (Table7, Fig.7),
edge-Al  inference  metrics (Table8,  Fig.8),
stress-condition robustness (Table9, Fig.9), and

subthreshold/high-field behaviour (Table 10, Fig. 10).
Comparisons are made against analytic UTB-SOI
models [1]- [6], BSIM-IMG [5], PSP [14], and TCAD
simulations [14]— [17]. At the device level, RMSE in
I D is reduced to (0.9-2.1%) over V; = 0.1-1.0V,
closely matching TCAD’s (1.3-2.8%) range while
outperforming BSIM-IMG (3.5-6.5%), PSP (5.0-9.8%),
and analytic UTB-SOI models (6.1-11.5%). Circuit
benchmarks show ring-oscillator delay and inverter
power errors of 2.8% and 2.1%, respectively. Compared
with BSIM-IMG (delay 10.2%, power 8.5%) and TCAD
(delay 3.1%, power 2.4%), our method demonstrates
significantly improved circuit-level fidelity. On-chip
inference on a Cortex-M55 achieves 200 pus latency,
5 kHz throughput, and 0.25 pJ/op energy, demonstrating
capabilities unattainable by conventional models. Under
thermal (273-373 K) and radiation (0-100 krad) stress,
RMSE remains <1.9%, whereas BSIM-IMG errors
exceed 8% at extremes. Subthreshold-slope error is

reduced to 53mV/dec+4% and V. error to
51 mV £ 2%, with high-field RMSE of 1.1% at V.D =
1.2V, improving upon BSIM-IMG’s 55 mV/dec £ 10%,
55mV + 8%, and 4.5% RMSE as well as PSP’s reported
metrics. These results confirm that embedding physics
into PINNs vyields SPICE-ready models with
TCAD-level fidelity, accelerated circuit simulation, and
suitability = for ultra-low-power, real-time edge
deployment.

5.6 Comparison with ANN-Only MOSFET Models

Table 11 contrasts the proposed PINN-enhanced
compact model with two recent purely data-driven ANN
approaches reported by [34] and [35]. While these ANN
methods achieve respectable I D fitting accuracy, they
do not embed device physics and lack pathways to
SPICE compatibility or edge-Al deployment. By
enforcing Poisson and continuity equations, the PINN
framework achieves <2 % RMSE across more than 2000
bias points, produces BSIM/Verilog-A parameter sets,
and executes in real time on a Cortex-M55 at
0.25 pJ/op—capabilities not matched by the comparison
models.

Table 11. Comparison of purely data-driven ANN MOSFET models with our PINN-enhanced framework.

RMS I<sub>D</sub> Error

Model Physics Embedding %) SPICE-compatibility Edge-Al Latency and Energy
Wei et al., CSTIC 2020 [34] None (ANN only) 3-5 No Not evaluated
Liu et al., EDTM 2025 [35] None (ANN only) 4-6 No Not evaluated
PINN-Enhanced (this work) Poisson and continuity eqns. <2 Yes (BSIM / Verilog-A) 200 ps and 0.25 pJ/op

6 Conclusion

This research presents a unified PINN-enhanced
compact modeling framework that bridges TCAD
accuracy with SPICE-ready models by embedding
physics constraints into the training loss and using
Levenberg—Marquardt fitting for parameter extraction.
The framework achieves < 2 % RMSE at the device
level and < 3 % delay error at the circuit level, while
running much faster than full TCAD simulations.

Iranian Journal of Electrical & Electronic Engineering, Vol. 22, No. 02, June 2026

Deployment of the quantized ONNX model on a Cortex-
M55 further demonstrates practical edge-Al inference
with ~200 ps latency and 0.25 pJ/op energy, confirming
its suitability for real-time, low-power applications.
Robustness under temperature and radiation stress
further validates reliability across operating regimes.
Open-source datasets and code ensure reproducibility
and provide a foundation for extending the pipeline to
FinFETs, GAA devices, and hardware-accelerated
inference platforms.
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