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Abstract: Physics-informed neural networks (PINNs) offer a promising route to bridge 
device-level simulations and compact circuit models. In this work, we present a hybrid 
modeling framework that integrates TCAD datasets with a baseline compact model and 
applies a PINN correction to capture stress-condition effects with high fidelity. The 
proposed approach achieves ≤ 2% route mean square error (RMSE) across more than 
2,000 bias points, maintaining stable predictions under temperature (273–373 K) and 
radiation (0–100 krad) variations. Extracted Berkeley Short-channel IGFET Model 
(BSIM) parameters enable direct SPICE simulation, ensuring compatibility with 
standard circuit design workflows. For deployment, the trained PINN is exported as a 
quantized ONNX model, achieving sub-millisecond inference and ultra-low energy 
consumption (0.25 pJ/op) on a Cortex-M55 platform. This dual pathway supports both 
high-accuracy circuit simulation and real-time edge inference, making it suitable for 
embedded applications under constrained conditions. Comparative analysis with recent 
ANN-based models confirms that our physics-informed approach offers superior 
interpretability, SPICE readiness, and deployment efficiency. All datasets, code, and 
models are released to support reproducibility, benchmarking, and further research in 
compact modeling and edge-AI integration. 

Keywords: Physics-informed neural network, Compact model, SPICE, ONNX 
quantization, Edge-AI. 

 

1  Introduction 

HE Ultrathin-body silicon-on-insulator (UTB-SOI) 
and gate-all-around (GAA) nanowire MOSFETs 

have emerged as critical device architectures for 
sub-10 nm scaling, providing superior electrostatic 
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control and enabling ultra-low-power edge-AI platforms 
[1]. Early analytic surface-potential models captured 
fringing fields and back-gate coupling in UTB-SOI 
devices [2], while carrier-based treatments extended 
these approaches to undoped ultrathin films for precise 
threshold prediction [3]. Subsequent compact 
frameworks optimized silicide contact resistance in 
source/drain regions [4], and charge–capacitance 
coupling methods refined junction-less and SELBOX 
architectures for sub-10 nm regimes [5]. Despite these 
advances, analytic models depend heavily on manual 
parameter fitting [6], are restricted to planar geometries 
[7], and fail to meet real-time inference demands [8], 
while also lacking native support for nonplanar GAA 
topologies [9]. Industry-standard BSIM-IMG and PSP 
toolchains automate SPICE integration [10] but still 
incur 3–7 % RMS error [11]. High-fidelity TCAD 
simulators achieve 1–3 % accuracy in I–V and C–V 
curves [12] but require minutes per bias point [13] and 
do not generate SPICE-ready models [14]. At the same 
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time, edge-AI hardware imposes stringent requirements, 
including inference latencies below 200 µs, energy per 
operation under 1 pJ, and robustness across temperature 
and radiation stress conditions [15]. To address these 
gaps, this work introduces a unified physics-informed 
neural network (PINN) augmented compact modeling 
pipeline that trains on TCAD-generated datasets with 
embedded Poisson and continuity constraints, automates 
Levenberg–Marquardt extraction of Verilog-AMS/BSIM 
parameters, and delivers an 8-bit quantized ONNX 
model on an Arm Cortex-M55 achieving ≤ 2 % RMSE, 
~200 µs latency, and 0.25 pJ/op energy. This 
methodology establishes a scalable path toward 
neuromorphic and autonomous hardware design by 
tightly integrating device-level modeling with 
system-level constraints. 

This work makes the following contributions: 

1. The PINN uses physics-based loss with Poisson and 
continuity residuals to capture stress effects. 

2. BSIM parameters are extracted automatically using 
Levenberg–Marquardt fitting for SPICE models. 

3. The trained PINN is exported as an 8-bit ONNX 
model, reaching ≤ 2 % RMSE, ~200 µs latency, and 
0.25 pJ/op on a Cortex-M55. 

4. Datasets, code, and models are released to ensure 
reproducibility and benchmarking.  

The remainder of this paper is organized as follows. 
Section 2 reviews related work in compact modeling and 
physics-informed learning. Section 3 details the 
proposed PINN framework, loss formulation, and 
training procedure. Section 4 presents parameter 
extraction, SPICE integration, and edge deployment 
results. Section 5 discusses limitations and future 
directions, and Section 6 concludes the paper. 

2 Literature Review 

This section reviews prior work on compact modeling 
and simulation approaches for advanced MOSFET 
architectures. It begins with physics‑based compact 
models for ultrathin‑body SOI devices, then examines 
TCAD‑driven studies of gate‑all‑around and junction‑less 
nanowires, followed by recent applications of 
physics‑informed neural networks (PINNs) for 
SPICE‑compatible model extraction. It also considers 
hardware‑aware co‑optimization strategies for edge‑AI 
platforms and concludes with analytic surface‑potential 
formulations addressing subthreshold and 
quantum‑mechanical effects in sub‑10 nm devices. 

2.1 Compact Modeling of UTB‑SOI MOSFETs 
Ultrathin‑body SOI devices have motivated compact 

models that balance accuracy with SPICE compatibility. 
Early analytic surface‑potential formulations captured 

fringing fields and back‑gate control [1], [2], while 
compact frameworks incorporated silicide source/drain 
resistance [3], [9]. Charge–capacitance coupling methods 
refined junction‑less and SELBOX architectures for 
sub‑10 nm nodes [4], [6]. Industry‑standard BSIM‑IMG 
and BSIM‑SPICE extensions enabled analog/digital 
integration [5], [10], and three‑dimensional or circular 
layouts improved scalability for trigate and CSNT devices 
[8], [11], [12], [13]. Collectively, these works established 
a strong foundation for UTB‑SOI compact modeling. 

2.2 TCAD‑Based Simulation of Nanowire MOSFETs 
Gate‑all‑around and junction‑less nanowire FETs have 

been extensively studied using TCAD to assess radiation 
hardness, ballistic transport, and variability. Radiation 
effects and single‑event upsets in double‑gate and SRAM 
cells are reported in [14], [16], [23], [24]. Core‑insulator 
GAA geometries and metal‑granularity fluctuations 
inform leakage and stability trade‑offs [17], [26]. 
Quasi‑ballistic drift‑diffusion and kinetic‑velocity models 
reveal scaling limits in SiGe nanowires [25], while 
InGaAs and III‑V junction‑less variants demonstrate 
high‑speed potential [21], [22], [30]. Tight‑binding and 
drain‑current analyses extend predictive fidelity for 
tri‑gate and FinFET logic [18], [19], [28], [29]. These 
studies underscore TCAD’s central role in nanowire 
optimization, though computational cost remains a barrier. 

2.3 Physics‑Informed Neural Networks for MOSFET 
Modeling 

Hybrid AI‑physics methods embed governing equations 
into neural networks, producing accelerated and accurate 
compact models. Foundational PINN theory is surveyed 
in [31], while ANN‑based compression of parameter sets 
is reported in [32]. Knowledge‑based SPICE neural 
models extend to 2D‑material FETs [33]. Data‑driven 
ANNs have also been applied: Wei et al. achieved 3–5 % 
RMSE with limited bias sweeps [34], and Liu et al. 
extracted gate‑dielectric trap parameters with emphasis on 
interpretability [35]. Broader ML perspectives chart the 
transition from classical to non‑classical transistors [36]. 
MISO‑ANN and PINN approaches predict junction‑less 
FinFET and wide‑temperature SiC behavior [37], [39], 
while PINN‑assisted SPICE frameworks improve 
efficiency for power MOSFETs and cryogenic CMOS 
[40], [41], [43]. Reliability applications, including 
remaining useful‑life prognostics, further extend PINN 
utility [42]. Together, these advances mark a paradigm 
shift in compact model extraction. 

2.4 Edge‑AI Hardware MOSFET Optimization 
Device‑to‑system co‑optimization frameworks link 

MOSFET characteristics to inference latency and energy 
budgets [43]. High‑speed emerging memories for AI 
accelerators establish benchmarks for retention and write 
energy [44], while computing‑in‑memory architectures 
leverage compact device models for low‑power PIM 
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arrays in 28 nm CMOS [43]. These works highlight the 
importance of aligning compact modeling with edge‑AI 
performance constraints. 

2.5 Surface‑Potential Modeling and Subthreshold 
Effects 

Accurate surface‑potential formulations are essential 
for predicting threshold and subthreshold behavior in 
scaled MOSFETs. Analytic models capture quantum 

confinement and hot‑carrier effects in planar and GAA 
devices [44], [46]. Second‑order models incorporate 
body‑bias and short‑channel effects [47], while the PSP 
family extends formulations to RF/analog IC design 
[50]. Ortiz‑Conde‑based asymmetric double‑gate 
solutions refine near‑threshold accuracy for 
energy‑efficient switching [49], [51]. Collectively, these 
contributions advance modeling of scaled MOSFETs 
across bias, temperature, and geometry regimes. 

Table 1. Benchmarking of Existing Compact-Modeling and Simulation Approaches. 

Category Representative 
Works 

Modeling 
Approach Accuracy Computation SPICE Compatibility AI Integration Key Limitation 

Analytic 
UTB-SOI [1], [2], [6] Surface-potential, 

analytic 5–10 % Fast Yes No 
Limited 

quantum/short-chan
nel capture 

Industry-standard [5], [10] BSIM-IMG, 
BSIM-SPICE 3–7 % Medium Yes No Intensive fitting, no 

GAA support 

TCAD nanowire [14], [16], [17] Numerical TCAD 1–3 % Slow No No High cost, offline, 
not SPICE-ready 

PINN/ANN [31], [32], [33] PINN, ANN 
regression 2–5 % Medium Partial Yes 

Limited 
UTB-SOI/nanowire 

validation 

Edge-AI co-opt. [43], [44], [45] Device-circuit 
co-opt. N/A N/A N/A N/A System focus, lacks 

compact detail 

Surface-potential [46], [47], [] Advanced SP 
models 4–8 % Fast Yes No 

No AI 
augmentation, 

planar/DG only 

 

None of the surveyed approaches simultaneously 
achieve ≤ 2 % error for both UTB‑SOI and GAA 
nanowires, provide SPICE‑ready models with low 
overhead, integrate PINNs for automated fitting, and 
explicitly optimize for edge‑AI constraints of energy, 
latency, and reliability. To address this gap, the proposed 
methodology employs a PINN‑assisted compact 
modeling framework that embeds Poisson and continuity 
equations into a neural correction layer, trains on 
TCAD‑generated I–V and C–V datasets, and outputs 
Verilog‑AMS/BSIM‑compatible models with < 2 % 
RMS error and runtime comparable to analytic solutions. 
By incorporating physics‑guided loss functions and 
automated hyperparameter tuning, manual calibration is 
reduced, while edge‑AI performance constraints are 
directly integrated into the training objective. 

3 Material and methods  

In this section, we detail the end-to-end workflow for 
developing and validating our PINN-augmented 
compact models. We begin by defining device 
geometries and baseline physics-based models, then 
describe the TCAD simulation setup for generating I–V 
and C–V datasets across bias, temperature, and radiation 

conditions. Next, we present the architecture and 
training procedure of the physics-informed neural 
network that refines baseline predictions. We then 
outline the extraction of SPICE-compatible parameters 
from the PINN output and the validation on prototype 
circuits. Finally, we establish the benchmarking criteria 
and comparative metrics used to quantify accuracy, 
computational efficiency, and edge-AI performance. 

3.1 Device Structures and Baseline Models 
This section defines the physical geometries, doping 

profiles, and reference compact models for the UTB-SOI 
and gate-all-around (GAA) nanowire MOSFETs used as 
the basis of our PINN-augmented framework. We 
describe the device cross-sections, present governing 
equations for surface potential and threshold voltage, 
and summarize key parameters in a reference table. 

3.1.1 Device Geometries 

We consider two device families: 

1. UTB-SOI MOSFET: A fully depleted silicon 
film of thickness (𝑇𝑇si) atop a buried oxide, with 
channel length (𝐿𝐿ch) defined by lithography. 
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2. GAA Nanowire MOSFET: A cylindrical silicon 
channel of radius (R) surrounded by gate oxide 
and metal gate for 360° electrostatic control. 

Fig.1. schematically depicts the physical cross‑sections 
of the two device families investigated in this work. 
Panel (a) shows the UTB‑SOI-MOSFET, comprising a 
fully depleted silicon film of thickness 𝑇𝑇si atop a buried 
oxide (BOX) layer, with channel length 𝐿𝐿ch defined by 
lithography. Panel (b) illustrates the GAA nanowire 
MOSFET, featuring a cylindrical silicon channel of 
radius R completely surrounded by gate oxide and a 
metal gate to provide 360° electrostatic control. In both 
devices, the gate oxide thickness 𝑇𝑇ox and metal‑gate 
work function 𝑃𝑃𝑚𝑚 are identical, enabling direct 
comparison of electrostatics and transport. The 
schematic highlights the key geometric parameters used 

in TCAD simulations and baseline compact models, as 
summarized in Table 2. 

 
Fig 1. Schematically illustrates the cross-sections. 

Table 2. UTB-SOI and GAA MOSFET Geometry and Doping Parameters. 

Device Type Lch (nm) (Tsi) or (R) (nm) Tox (nm) (𝑁𝑁𝐴𝐴)(𝑐𝑐𝑚𝑚−3) (Φ𝑚𝑚)(𝑒𝑒𝑒𝑒) Baseline Model 

UTB-SOI 10, 7 (𝑇𝑇si = 5) 1.2 (1 × 1018) 4.5 BSIM-IMG [5] 

GAA Nanowire 10, 7 (𝑅𝑅 = 5) 1.0 (1 × 1018) 4.5 PSP [14] 

 

3.1.2 Governing Electrostatics 

Under the gate, the two-dimensional potential 
(ϕ(𝑥𝑥,𝑦𝑦)) satisfies Poisson’s Eq .1. 

 ∇2ϕ(𝑥𝑥,𝑦𝑦) = −ρ(𝑥𝑥,𝑦𝑦)
εsi

                                                    (1) 

where (ρ = 𝑞𝑞𝑁𝑁𝐴𝐴) is the charge density in a uniformly 
doped channel (doping (𝑁𝑁𝐴𝐴)) and (εsi) is silicon’s 
permittivity. For the UTB-SOI film (thickness (𝑇𝑇si), a 
fully depleted approximation yields the threshold voltage 
in Eq.2. 

𝑉𝑉th = Φms + 2ϕ𝐹𝐹 + 𝑞𝑞𝑁𝑁𝐴𝐴𝑇𝑇si
2

8εsi
+ 𝑄𝑄ss

𝐶𝐶ox
                                    (2) 

where (Φms) is the metal-semiconductor work-function 
difference, (ϕ𝐹𝐹) is the Fermi potential, (𝑄𝑄ss) is interface 
charge, and (𝐶𝐶ox = εox/𝑇𝑇ox). In cylindrical coordinates 
for a GAA nanowire, the radial Poisson Eq.3. becomes: 

�1
𝑟𝑟
𝑑𝑑
𝑑𝑑𝑑𝑑

! �𝑟𝑟, 𝑑𝑑ϕ
𝑑𝑑𝑑𝑑
� = −ρ(𝑟𝑟)

εsi
�                                           (3) 

with boundary �ϕ(𝑟𝑟 = 𝑅𝑅)�set by the gate bias and oxide 
capacitance per unit area. 

3.1.3 Baseline Compact Models 

We adopt industry-standard models as baselines: 
BSIM-IMG for UTB-SOI, which expresses drain current 
in the linear region as in Eq .4. 

�𝐼𝐼𝐷𝐷 = μeff,𝐶𝐶ox, 𝑊𝑊
𝐿𝐿

, (𝑉𝑉𝐺𝐺𝐺𝐺−𝑉𝑉𝑡𝑡ℎ)2

2
, (1 + λ𝑉𝑉𝐷𝐷𝐷𝐷)�                  (4)                   

where (μeff) is effective mobility and (λ) is channel-
length modulation parameter. PSP for GAA nanowire 
and bulk MOSFETs, which solves surface potential (ϕ𝑠𝑠) 
via a parabolic approximation (See. Eq.5.). 

[𝑎𝑎,ϕ𝑠𝑠
2 + 𝑏𝑏,ϕ𝑠𝑠 + 𝑐𝑐 = 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝐹𝐹𝐹𝐹]                                  (5) 

 

with coefficients (a, b, c) fitted to capture body-bias and 
short-channel effects. 

3.1.4 Summary of Device Parameters 

Table 2 presents the geometric and doping 
specifications for UTB-SOI and GAA nanowire 
MOSFETs, with corresponding baseline compact 
models. This precise definition of device anatomy and 
reference models establishes the foundation for 
subsequent TCAD data generation and PINN-based 
corrections. 

3.2 TCAD Simulation Framework 

This section describes the numerical simulation 
workflow used to generate high-fidelity I–V and C–V 
datasets across a wide range of operating conditions. 
These datasets form the foundation of the proposed 
physics-informed neural network (PINN) training 
process and help validate model accuracy under realistic 
bias and environmental variations. 

3.2.1 Device Setup and Simulation Environment 

We utilize Sentaurus Device (Synopsys) and Silvaco 
Atlas as the core simulation engines for modeling carrier 
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transport, quantum confinement, and radiation-induced 
shifts in UTB-SOI and GAA nanowire MOSFETs. Both 
simulators solve the coupled Poisson drift–diffusion 
equations along with quantum corrections (effective 
mass and density gradient models). Material parameters 
mobility, permittivity, bandgap, doping concentration 
are calibrated to published experimental data [1], [5], 
[16]. The mesh is refined near the silicon-oxide interface 
and in the vertical channel for UTB structures, and 
radially within the nanowire cross-section to capture 
cylindrical symmetry. Gate work function is fixed at 
4.5 eV, and temperature-dependent mobility degradation 
is enabled via the Masetti and Lombardi models. 

3.2.2 Bias and Environmental Conditions 

The simulations span multiple operating regimes to 
ensure model generalization Gate voltage sweep 
(𝑉𝑉G = 0 to 1.2,V),Drain voltage sweep(𝑉𝑉D =
0 to 1.2,V),Temperature variation (𝑇𝑇 = 273 to 373,K), 
TID  �0 to 100,krad(Si)� for nanowire FETs. These 
conditions allow evaluation of subthreshold swing, 
threshold voltage roll-off, and leakage current 
enhancement under thermal and radiation stress [16], 
[17].  

3.2.3 Extracted Characteristics 

From the TCAD simulations, we extract 
comprehensive electrical characteristics essential for 
compact model refinement and validation. These include 
the transfer characteristics, represented by drain current 
(𝐼𝐼D) versus gate voltage (𝑉𝑉G) at fixed drain voltage (𝑉𝑉D); 
the output characteristics, with (𝐼𝐼D)plotted against 
(𝑉𝑉D)at constant (𝑉𝑉G); and gate capacitance curves 
comprising �𝐶𝐶gs� and �𝐶𝐶gd�variations across bias 
conditions. In addition, radiation-induced threshold 
voltage shifts (Δ𝑉𝑉th) are quantified under total ionizing 
dose exposure, and temperature-dependent effects such 
as mobility degradation and leakage current 
enhancement are also characterized. These 
multidimensional datasets form the backbone of the 
PINN training and help ensure accurate model 
generalization under diverse operating regimes. 

3.2.4 Simulation Matrix 

Table 3, provides a structured overview of the sweep 
conditions used throughout TCAD simulations, 
characterizing the electrical and environmental input 
space. The gate voltage (𝑉𝑉𝐺𝐺) and drain voltage (𝑉𝑉𝐷𝐷) are 
varied from 0 V to 1.2 V in 0.1 V increments to span 
subthreshold, linear, and saturation regions. Temperature 
is swept from 273 K to 373 K in 25 K increments to 
evaluate thermal robustness, while Total Ionizing Dose 
(TID), relevant to GAA nanowire MOSFETs, is 
incremented from 0 to 100 krad (Si) in 25 krad steps to 
assess radiation tolerance. These ranges enable multi-
domain benchmarking across bias and stress profiles. 

Table 3. Simulation Matrix of Electrical and Environmental 
Sweep Parameters. 

Sweep Variable Range Increment Notes 

Gate Voltage 
(VG) 0 to 1.2 V Δ0.1 V Covers weak to 

strong inversion 

Drain Voltage 
(VD) 0 to 1.2 V Δ0.1 V 

Linear to 
saturation 

region 

Temperature 
(T) 273 to 373 K Δ25 K Enables thermal 

robustness 

Radiation Dose 
(TID) 

0 to 100 krad 
(Si) Δ25 krad Nanowire only 

3.3 PINN Architecture and Training 

In this section, we present the fully technical details of 
our Physics-Informed Neural Network (PINN) that 
refines baseline compact-model outputs using TCAD 
data while enforcing Poisson’s equation and continuity 
constraints. 

3.3.1 Mathematical Formulation 

Let: 

1. (𝑥𝑥 = [𝑉𝑉𝐺𝐺 ,𝑉𝑉𝐷𝐷 ,𝑇𝑇, ,𝑔𝑔]) denote the input vector, 
where (𝑔𝑔) comprises device geometry 
parameters �𝑒𝑒.𝑔𝑔. , (𝑇𝑇si,𝑅𝑅,𝑇𝑇ox)�. 

2. �𝐼𝐼base(𝑥𝑥)� be the drain current predicted by a 
standard compact model (BSIM-IMG or PSP). 

3. �Δ𝐼𝐼(𝑥𝑥; 𝜃𝜃)� be the neural-network–predicted 
correction, with weights (θ). 

The PINN’s output is [𝐼𝐼(𝑥𝑥; θ) =
𝐼𝐼base(𝑥𝑥); +;Δ𝐼𝐼(𝑥𝑥; θ), . ], To enforce device physics, we 
define the electrostatic potential (ϕ)and carrier density 
residuals: ℛϕ(𝑥𝑥; θ) = ∇ ⋅ (ε𝑠𝑠𝑠𝑠∇ϕ) + 𝑞𝑞𝑁𝑁𝐴𝐴, ℛ𝑛𝑛(𝑥𝑥; θ) =
∇ ⋅ (𝑛𝑛μ∇ϕ) − ∂𝑛𝑛

∂𝑡𝑡
, and require (ℛϕ = 0), (ℛ𝓃𝓃 = 0) in 

steady state. We approximate (ϕ) and (n) via analytic 
baseline expressions perturbed by small NN corrections, 
computing their residuals with automatic differentiation. 

3.3.2 Network Architecture 

Fig. 2. illustrates the internal structure of the Physics-
Informed Neural Network (PINN) designed to correct 
baseline compact model predictions of MOSFET 
behaviour. The input vector [𝑉𝑉𝐺𝐺 ,𝑉𝑉𝐷𝐷 ,𝑇𝑇,𝑔𝑔], where 
\mathbf{g} includes geometry parameters such as 
𝑇𝑇si,𝑅𝑅, 𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇ox, is processed through four fully connected 
(FC) layers with 64 neurons each and tanh activation 
functions. To enhance generalization across device 
families, skip connections are used to inject the 
geometry vector 𝑔𝑔 directly into the input of layers 2 and 
3. After each hidden layer, batch normalization (BN) is 
applied to stabilize learning and mitigate internal 
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covariate shifts. The final layer produces a scalar 
correction term Δ𝐼𝐼, which is added to the baseline 
compact model output 𝐼𝐼base to yield the PINN-refined 
current response. The network’s output is not purely 
data-driven; rather, it is coupled with a physics-informed 
loss function that incorporates residuals from Poisson 
and continuity equations. These residuals are computed 
via automatic differentiation and contribute to the total 
training loss. This dual-path architecture combining 
empirical input–output mappings with physics-
consistency constraints enables the PINN to retain 
accuracy and extrapolation capability under varied bias 
and environmental conditions. 

 
Fig 2. PINN Architecture with Geometry-Aware Skip 

Connections and Tanh-Activated Dense Layers. 

To select the multilayer perceptron (MLP) topology, 
we performed a small grid search over (i) depth: 2, 4, 
and 6 hidden layers; (ii) width per layer: 32, 64, and 128 
neurons; and (iii) activation functions: ReLU vs. tanh. 
Each candidate was trained on the same TCAD-derived 
training/validation split, and evaluated on a held-out 
validation set using the composite physics-informed loss 
(Sec. 3.3.3) and inference latency measured on the Arm 
Cortex-M55. We found that a 4-layer, 64-neuron per-
layer MLP with tanh activations and geometry-aware 
skip connections yielded the best trade-off: 

a. Validation RMSE ≤ 2.0 % 

b. Physics residuals Rₚ, Rₙ ≤ 1e-4 

c. Inference latency ~ 200 µs (quantized) 

Tanh activations were preferred over ReLU due to 
their smooth second derivatives, which improve the 
stability and convergence of automatic-differentiation-
based residual computations. The final architecture thus 
balances approximation power, physics consistency, and 
real-time edge performance 

 

3.3.3 Physics-Informed Loss Function 

We minimize a composite loss over a batch of (N) 
TCAD samples (𝑥𝑥𝑖𝑖 , 𝐼𝐼TCAD𝑖𝑖):  

ℒ(𝜃𝜃) =
1
𝑁𝑁

|𝐼𝐼(𝜃𝜃) − 𝐼𝐼TCAD|22 + 𝜆𝜆𝜙𝜙|ℛ𝜙𝜙(𝜃𝜃)|22 

                                                         +𝜆𝜆𝑛𝑛|ℛ𝓃𝓃(𝜃𝜃)|22     (6) 

Eq.6. defines a physics-informed composite loss 
function that balances data fidelity with physics-based 
residual constraints for training. In  PINN framework, 
the total loss consists of three key terms: the data loss 
(ℒdata)measures the mean‐squared error between the 
network’s current predictions and the high‐fidelity 
TCAD I–V curves, ensuring accurate reproduction of 
simulated electrical behaviour, the physics losses (ℒϕ) 
and (ℒ𝑛𝑛) impose penalties on the Poisson and carrier 
continuity equation residuals, respectively, with (ℒϕ) 
quantifying deviations from electrostatic equilibrium and 
(ℒ𝑛𝑛) capturing inconsistencies in charge transport; and 
the   hyper‐weights (λϕ) and (λ𝑛𝑛) tune the relative 
importance of these physics constraints versus the pure 
data fit, balancing strict physical consistency against 
empirical accuracy.Selection of λ₁ and λ₂.  We 
determined the physics‐weighting hyperparameters λ₁ 
(Poisson residual) and λ₂ (continuity residual) via a two‐
dimensional grid search over {0.1, 1, 10, 100}. Each (λ₁, 
λ₂) pair was evaluated on a held‐out validation set by 
monitoring (a) the composite validation loss, (b) 
maximum physics residuals Rₚ, Rₙ, and (c) convergence 
stability.  We selected λ₁ = 10 and λ₂ = 10 as they 
yielded the best trade‐off validation RMSE ≤ 2 %, 
residuals Rₚ, Rₙ < 1 × 10⁻⁴, and smooth, stable training 
dynamics.  This procedure ensures that physical 
consistency is enforced without degrading empirical I–V 
accuracy. Adjust the inline loss definition in Eq.7. to 
read: 

𝐿𝐿total = 𝐿𝐿data +  𝜆𝜆₁ · 𝐿𝐿ₚ +  𝜆𝜆₂ · 𝐿𝐿ₙ                              (7) 

3.4 Training Data Preparation 

In preparing the training dataset, we first normalize 
each input feature gate voltage, drain voltage, 
temperature, and device geometry, so that every 
dimension maps uniformly into the interval [–1, 1], and 
we transform the drain‐current outputs into a logarithmic 
scale to compress their dynamic range. We then split the 
full TCAD matrix into 70 percent for training, 15 
percent for validation, and 15 percent for testing, 
ensuring that model evaluation reflects unseen data. 
Finally, to capture the steep I–V behaviour in critical 
regimes, we oversample data points by a factor of two 
within the subthreshold region (𝑉𝑉𝐺𝐺 ∈ [0, 0.2] V) and the 
saturation region (𝑉𝑉𝐷𝐷 ∈ [0.8, 1.2] V), which sharpens the 
network’s ability to learn rapid transitions. 
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3.5 Training Workflow algorithms. 

Algorithm 1. PINN Training for Compact‑Model Correction.  

1:  Function Train_PINN({x_i, I^TCAD_i}, I_base) 

2:      Initialize θ ~ Xavier 

3:      Set Adam optimizer (lr = 1e–3) 

4:      for epoch = 1 to MaxEpochs do 

5:          for minibatch B ⊆ TCAD data do 

6:              I_b ← I_base(x), ∀ x ∈ B 

7:              ΔI ← forward_pass(PINN, B; θ) 

8:              I_tot ← I_b + ΔI 

9:              R_φ, R_n ← auto_diff(I_tot) 

10:       L_data, L_φ, L_n ← compute_losses(R_φ, R_n, I_tot) 

11:             L_total ← L_data + L_φ + L_n 

12:             θ ← optimizer_update(θ, ∂L_total/∂θ) 

13:         end for 

14:         if val_loss ↑ for 10 epochs then break 

15:      end for 

16:  return θ*    

This algorithm summarizes the PINN training loop, 
where each TCAD sample is processed to compute 
baseline outputs, apply neural corrections, and evaluate 
physics-informed residuals. The total loss combining 
empirical fit and physics consistency is minimized 
through backpropagation until convergence, with early 
stopping triggered by validation performance. 

3.6 SPICE-Compatible Parameter Extraction 

To enable seamless deployment of PINN-refined 
models in standard circuit simulation environments, this 
section outlines the methodology for extracting Verilog-
A or BSIM-compatible parameters from learned 
electrical characteristics. 

3.6.1 SPICE Deployment Goal 

The goal is to translate physically consistent PINN 
outputs such as synthetic I_D and 𝐶𝐶𝑔𝑔𝑔𝑔/𝐶𝐶𝑔𝑔𝑔𝑔 responses 
into parameter sets suitable for SPICE-based simulators 
(e.g., HSPICE, Spectre). These models must replicate 
static and dynamic behaviour under varying bias, 
geometry, and environmental conditions. 

3.6.2 Extraction Workflow 

Fig.3. outlines the sequential process used to translate 
PINN‑generated electrical characteristics into 
SPICE‑ready compact‑model parameters. The workflow 
begins with synthetic drain‑current (𝐼𝐼𝐷𝐷), 
gate‑capacitance �𝐶𝐶𝑔𝑔𝑔𝑔,𝐶𝐶𝑔𝑔𝑔𝑔�, and threshold‑voltage (𝑉𝑉th) 

curves produced by the trained PINN. These curves are 
passed to a nonlinear curve‑fitting engine based on the 
Levenberg–Marquardt algorithm, which adjusts the 
parameters of the target BSIM equations to minimize the 
error between simulated and PINN‑predicted data. The 
optimized parameter set is then formatted into 
SPICE‑compatible syntax using a BSIM parameter 
translator, ensuring correct mapping to Verilog‑AMS or 
BSIM‑CMG model files. Finally, the fitted models are 
validated in a suite of benchmark circuits such as CMOS 
inverters and five‑stage ring oscillators, where delay, 
power, and waveform fidelity are compared against 
TCAD reference results. This step‑wise approach 
ensures that the extracted parameters preserve both 
device‑level accuracy and circuit‑level performance. 

 
Fig 3. Workflow for SPICE-compatible parameter extraction 

and validation. 

3.6.3 Fitting Methodology 

The SPICE parameter extraction process employs a 
synthetic dataset comprising over 2000 bias points per 
device type, generated directly from the trained PINN 
model. Curve fitting is performed using the Levenberg–
Marquardt nonlinear least-squares algorithm [17], 
utilizing both drain current and gate capacitance curves. 
The target compact model structures are BSIM-IMG for 
UTB-SOI and BSIM-CMG for nanowire FETs, as 
reported in [1] and [5], respectively. To ensure circuit-
level accuracy, tolerance criteria include an RMS current 
error ≤ 2% and delay deviation within ±5% compared to 
TCAD benchmarks when applied to a five-stage ring 
oscillator. The parameter optimizer solves the 
minimization problem in Eq .8. 

𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃BSIM

∑ �𝐼𝐼𝑖𝑖BSIM(θBSIM) − 𝐼𝐼𝑖𝑖PINN�2 +𝑁𝑁
𝑖𝑖=1

                                    𝛼𝛼∑ �𝐶𝐶𝑗𝑗BSIM − 𝐶𝐶𝑗𝑗PINN�2𝑀𝑀
𝑗𝑗=1                 (8)      

where the scalar α balances fitting emphasis between 
current and capacitance domains. 
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3.6.4 Comparison Metrics 

In Table 4, we report four key figures of merit: RMS 
drain-current error (target ≤ 2 %), parameter fit time 
(target ≤ 2 min), ring-oscillator delay deviation (target ± 
5 %), and waveform correlation (target ≥ 0.98). 
Compared to the Baseline BSIM exhibiting 6–8 % RMS 
error, ~10 min fit time, ±10 % delay error, and 0.89 
correlation our PINN-enhanced model achieves 1–2 % 
RMS error, fit time of 1–2 min, ±3 % delay deviation, 
and ~0.99 waveform correlation. These results 
demonstrate that the PINN correction not only 
accelerates SPICE parameter extraction but also 
preserves high-fidelity timing behaviour in benchmark 
circuits. These results confirm that the PINN-enhanced 
parameter sets not only fit individual device curves but 
also preserve timing fidelity in benchmark circuit 
topologies [1], [5], [16]. 

3.7 Benchmarking and Evaluation 

 The proposed PINN-enhanced modeling framework 
demonstrates a compelling balance between simulation 
fidelity, circuit integration, and computational 
efficiency. Compared to traditional analytic 

approximations [1]– [6], commercial BSIM models [5], 
[14], and full TCAD simulations [14]– [17], the PINN 
approach achieves ≤ 2% RMSE in drain current 
prediction with compatibility for SPICE environments 
and low-energy inference suitable for edge-AI 
deployment, as supported by [31]. Benchmark results 
also reveal superior reliability under temperature and 
radiation stress conditions, validating the model's 
robustness across physical extremes. These metrics 
confirm its readiness for scalable, device-level modeling 
and system-level simulation (see Table 5). 

Table 4. SPICE Fitting and Circuit-Level Metrics. 

Metric Target Baseline (BSIM) [1], 
[5] PINN-Enhanced 

RMS (I_D) Error ≤2% 6–8% 1–2% 

Fit Time ≤2 mins ~10 mins 1–2 mins 

Circuit Delay 
(RO) ±5% ±10% ±3% 

Waveform 
Correlation ≥0.98 ~0.89 ~0.99 

 

Table 5. Comparative Benchmark Across Modeling Approaches. 

Approach RMSE (𝐼𝐼𝐷𝐷) Runtime (per device) SPICE-Ready Edge-AI Energy(𝑝𝑝𝑝𝑝/
𝑜𝑜𝑜𝑜) Reliability (%) 

Analytic UTB-SOI [1]– 
[6] 5–10% <1 ms No <0.2 90–93 

BSIM-IMG [5], PSP 
[14] 3–7% ~10 ms Yes N/A 96 

TCAD [14]– [17] 1–3% >1 min No N/A 97 

PINN-Enhanced (this 
work) ≤2% ~15 ms Yes 0.25 ≥98 

 

4. Implementation and Deployment 

In this section, we describe how the PINN‐enhanced 
compact model is realized in software and deployed on 
edge‐AI hardware. First, we outline the end‐to‐end 
software pipeline from data ingestion through SPICE‐
file generation complete with algorithm pseudocode and 
a system‐architecture diagram. Then, we detail the 
quantization, optimization, and runtime deployment on a 
microcontroller unit (MCU), including key formulas and 
an inference algorithm, accompanied by a hardware 
block diagram. 

4.1 Software Implementation 

Fig.4. presents the complete software pipeline that 
transforms raw TCAD datasets into both SPICE‑ready 
compact models and deployable edge‑AI artifacts. The 
process begins with the Data Loader and Normalizer, 
which ingests Hierarchical Data Format (HDF5) 

formatted simulation outputs, scales all input features to 
the range [−1, 1], and compresses current values using a 
logarithmic transform. These normalized batches are 
passed to the PINN Correction module, where the 
pretrained physics‑informed neural network computes 
bias‑dependent corrections to the baseline 
compact‑model outputs. The corrected I‑V and C‑V 
curves then enter the Curve Fitter, which applies the 
Levenberg–Marquardt algorithm to extract optimized 
BSIM parameters. The SPICE‑File Generator injects 
these parameters into Verilog‑AMS templates, 
producing simulation‑ready model libraries. Finally, the 
Model Export stage converts the trained PINN to ONNX 
format and applies post‑training quantization, yielding 
an 8‑bit model suitable for real‑time inference on 
microcontrollers. This step‑wise description ensures that 
each block in the pipeline is understood before the 
reader examines the architectural diagram 
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Fig 4. software pipeline architecture. 

Finally, the Model Export block converts the PyTorch 
PINN to ONNX format and performs post-training 
quantization for edge inference. This end-to-end 
sequence is formalized in Algorithm 2, which outlines 
each step from data ingestion through SPICE file and 
ONNX artifact generation. 

Algorithm 2. End-to-End Software Pipeline. 

1:  Function PINN_Extract(X_raw, Y_raw, I_base, θ*) 

2:      Load TCAD data (*.h5) 

3:      X_norm, Y_log ← normalize (X_raw, Y_raw) 

4:      For batch in DataLoader(X_norm) do 

5:                         ΔI ← PINN (batch; θ*) 

6:                         I_pinn ← I_base(batch) + ΔI 

7:                         Store I_pinn 

8:            end for 

9:      θ_BSIM ← LM_fit(I_pinn, C_pinn, init_params, α) 

10: render_template('bsim_template.vams', θ_BSIM) → 
mosfet_models.vams 

11:           torch.onnx.export(PINN, 'pinn_model.onnx') 

12: apply_quantization('pinn_model.onnx’) → 
pinn_model_quant.onnx 

   13:  return mosfet_models.vams, pinn_model_quant.onnx 

4.1.2 PINN-to-SPICE Pipeline 

We read TCAD outputs from HDF5, normalize inputs 
to [-1,1] and currents to log scale, then batch-process 
them through the PyTorch-implemented PINN. The 
corrected currents and capacitances feed into a SciPy-
based Levenberg–Marquardt fitter that minimizes 
combined I–V and C–V residuals. The optimized BSIM 
parameter vector is injected into a Jinja2 template to 
produce a ready-to-simulate Verilog-AMS library. 

4.1.3 Model Export for Edge Inference 

Finally, the trained PINN (PyTorch stat edict) is 
converted to ONNX format with dynamic axes, then 
post-training quantized to 8-bit precision. This artifact, 
along with scale/zero-point metadata, is packaged for 

deployment on microcontrollers or ASICs via ONNX 
Runtime Micro, enabling real-time, low-power inference 
of Δ𝐼𝐼 corrections at the edge. 

4.2 Edge-AI Deployment 

This section details how the trained PINN is quantized 
and executed on resource-constrained hardware. First, 
we present the tensor quantization scheme that converts 
floating-point weights and activations into 8-bit integers. 
Then we describe the real-time inference pipeline, 
culminating in SPICE-ready current corrections 
delivered over a microcontroller interface. 

4.1.1 Model Quantization 

We convert each floating-point tensor (weights or 
activations) to 8-bit integers using a uniform affine 
scheme. This involves computing a per-tensor scale and 
zero-point, mapping real values into the integer range [-
128,127], then reversing the process during 
dequantization. 

Let [𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚] observed minimum and maximum of 
a tensor. Define in Eq.9. 

scale =  𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
127−(−128)

𝑑𝑑                                                 (9)    

To enable efficient edge deployment, we adopt an 8‑bit 
linear quantization scheme. The zero‑point offset is 
computed as 𝑧𝑧 = round �−128 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

scale
�,where 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  the 

minimum value in the tensor and \mathrm{scale} is the 
quantization scaling factor. Quantization maps a 
floating‑point value x to an integer 𝑥𝑥� using 𝑥𝑥� =
clip �round � 𝑥𝑥

scale
� + 𝑧𝑧,   − 128,  127�,ensuring the result 

fits within the signed 8‑bit range. Dequantization 
approximates the original floating‑point value by 𝑥𝑥 ≈
scale ⋅ (𝑥𝑥� − 𝑧𝑧).This clear two‑step mapping allows 
tensors to be stored using only 1 byte per element while 
preserving dynamic range and inference accuracy.  

 
Fig 5. Flowchart of Bias Vector Processing in Quantized 

PINN Inference Core. 
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Fig.5 depicts the quantized PINN inference pipeline 
implemented on an Arm Cortex‑M55 MCU using 
ONNX Runtime Micro. The process begins with the 
Bias Reception stage, where new bias vectors 
[𝑉𝑉𝐺𝐺 ,  𝑉𝑉𝐷𝐷 ,  𝑇𝑇,  𝑔𝑔] are received via the MCU’s UART/SPI 
interface. These inputs are normalized to the range 
[−1, 1] by a fixed‑point kernel, consistent with the 
scaling applied during model training. In the Quantized 
Inference stage, the bias vector is processed through four 
fully connected layers of 64 neurons each, executed via 
8‑bit integer MAC operations on the M‑PROFILE DSP 
unit. The resulting 8‑bit outputs 𝑦𝑦� are dequantized to 
floating‑point deltas Δ𝑦𝑦 using 𝑦𝑦 = �𝑦𝑦� − 𝑧𝑧𝑦𝑦� 𝑠𝑠𝑦𝑦. Finally, 
during Output Assembly, the current delta Δ𝐼𝐼 is added to 
the baseline compact‑model prediction, and the 
corrected 𝐼𝐼𝐷𝐷 and 𝐶𝐶𝑔𝑔 values are transmitted to the host 

through a SPICE‑API callback for simulation or 
real‑time control. 

5 Result and analysis  

5.1 Device-Level Accuracy 

Table 6 and Fig. 6 present the root‑mean‑square error 
(RMSE) of drain‑current (𝐼𝐼𝐷𝐷) predictions across 
gate‑bias conditions. The results are benchmarked 
against established analytic UTB‑SOI models [1]– [6], 
the PSP framework [14], the BSIM‑IMG standard [5], 
and high‑fidelity TCAD simulations [14]– [17]. This 
comparison highlights the relative accuracy of the 
proposed approach across a wide bias range while 
maintaining consistency with both compact‑model 
baselines and numerical simulations. 

Table 6. Device-Level RMSE vs Gate Bias. 

Method 𝑉𝑉𝐺𝐺=0.1 V 𝑉𝑉𝐺𝐺=0.2 V 𝑉𝑉𝐺𝐺=0.5 V 𝑉𝑉𝐺𝐺=1.0 V 

Analytic UTB-SOI [1]– [6] 11.5 % 9.2 % 7.5 % 6.1 % 

PSP [14] 9.8 % 8.1 % 6.3 % 5.0 % 

BSIM-IMG [5] 6.5 % 5.8 % 4.2 % 3.5 % 

TCAD [14]– [17] 2.8 % 2.4 % 1.9 % 1.3 % 

PINN-Enhanced (this work) 2.1 % 1.8 % 1.3 % 0.9 % 

 

 
Fig 6. Device-Level RMSE vs. Gate Bias. 

5.2 Circuit-Level Performance 

Table 7 and Fig. 7 present the delay and power errors 
observed in a five‑stage ring oscillator and a static 
inverter. The comparison includes BSIM‑IMG [5], PSP 
[14], TCAD simulations [14]– [17], and the proposed 
PINN‑enhanced model, highlighting relative 
circuit‑level fidelity across these approaches. 

 

Table 7. Circuit Metrics Comparison. 

Method Delay Error (%) Power Error (%) Energy-Delay 
Product (pJ·ns) 

BSIM-IMG [5] 10.2 8.5 85.7 

PSP [14] 8.8 6.9 70.4 

TCAD [14]–
[17] 3.1 2.4 18.6 

PINN-Enhanced 
(this work) 2.8 2.1 12.6 

 
Fig 7. Ring Oscillator Delay Error. 
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5.3 Edge-AI Inference Metrics 

Table 8 and Fig. 8 compare energy, latency, 
throughput, model size, and memory footprint across 
BSIM‑IMG [5], PSP [14], TCAD simulations [14]– [17], 

and the proposed PINN‑enhanced inference on a 
Cortex‑M55. This consolidated benchmarking highlights 
both computational efficiency and hardware feasibility 
relative to established compact‑modeling approaches. 

Table 8. Edge-AI Inference Performance. 

Method Energy 
(pJ/op) Latency (µs) Throughput (kHz) Model Size (KB) RAM (KB) 

BSIM-IMG [5] N/A N/A N/A 12 8 

PSP [14] N/A N/A N/A 24 16 

TCAD [14]–[17] N/A N/A N/A 48 32 

PINN-Enhanced (this work) 0.25 200 5 96 64 

 

 
Fig 8. Edge-AI Inference Metrics: Energy vs. Latency Trade-

off. 

5.4 Stress-Condition Robustness 

Table 9 and Fig. 9 assess the RMSE of drain‑current 
(𝐼𝐼𝐷𝐷) predictions under varying temperature conditions 
(273 K–373 K) and total ionizing dose (0–100 krad). The 

comparison includes BSIM‑IMG [5], PSP [14], and 
TCAD simulations [14]– [17], providing a benchmark 
for evaluating model robustness across environmental 
stress factors. Figure 9 presents the root‑mean‑square 
error (RMSE) of drain current (I_D) predictions under 
varying temperature conditions (260–380 K). The results 
demonstrate that conventional compact models such as 
BSIM and PSP exhibit significant error growth with 
increasing temperature, reaching values above 6–8%. In 
contrast, the proposed PINN‑enhanced model 
consistently maintains RMSE below 2% across the 
entire temperature range, closely matching TCAD 
reference behaviour. This robustness under thermal 
stress highlights the ability of the PINN correction to 
generalize beyond nominal bias conditions. As a result, 
it ensures reliable device-level modeling for both circuit 
simulation and edge deployment. The improvement is 
particularly relevant for radiation‑ and 
temperature‑sensitive applications, where predictive 
stability is critical. 

Table 9. RMS 𝐼𝐼𝐷𝐷 Error under Temperature and Radiation Stress. 

Method 273 K 300 K 350 K 373 K 0 krad 50 krad 

BSIM-IMG [5] 4.5 % 5.8 % 7.2 % 8.6 % 5.8 % 7.0 % 

PSP [14] 3.9 % 5.1 % 6.3 % 7.5 % 5.2 % 6.5 % 

TCAD [14]– [17] 1.8 % 1.9 % 2.1 % 2.4 % 1.9 % 2.2 % 

PINN-Enhanced (this work) 1.2 % 1.3 % 1.5 % 1.8 % 1.3 % % 
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Fig 9. Stress-Condition Robustness: RMSE 𝐼𝐼𝐷𝐷 under 

Temperature and TID. 

 

5.5 Subthreshold and High-Field Performance 

Table 10 and Fig. 10 quantify subthreshold slope error, 
threshold‑voltage error, and high‑field RMSE at 𝑉𝑉𝐷𝐷 = 
1.2 V, comparing analytic UTB‑SOI models [1]– [6], 
PSP [14], BSIM‑IMG [5], TCAD simulations [14]– [17], 
and the proposed PINN‑enhanced approach. Fig 11. 
shows that the PINN‑based model reduces subthreshold 
slope and threshold‑voltage errors by more than 50% 
relative to BSIM and PSP baselines, while Fig 12. 
demonstrates a low‑field RMSE improvement of 
approximately 1.1%, closely aligning with TCAD 
accuracy 

 

Table 10. Subthreshold and High-Field Performance Comparison. 

Method Subthreshold. Slope Error (mV/dec) Threshold Voltage Error (mV) RMSE 𝐼𝐼𝐷𝐷 @ 𝑉𝑉𝐷𝐷=1.2 V (%) 

Analytic UTB-SOI [1]– [6] 60 ± 15 60 ± 12 8 

PSP [14] 58 ± 10 55 ± 8 4.5 

BSIM-IMG [5] 55 ± 10 55 ± 8 4.5 

TCAD [14]– [17] 52 ± 5 52 ± 3 2.2 

PINN-Enhanced (this work) 53 ± 4 51 ± 2 1.1 

 

 
Fig 10. Comparison of Subthreshold Slope Error across Analytic, BSIM, PINN, PSP, and TCAD models. 

 
Fig 11. Comparison of Threshold Voltage Error across Analytic, BSIM, PINN, PSP, and TCAD models. 
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Fig 12. Comparison of High-field RMSE at VD=1.2 across Analytic, BSIM, PINN, PSP, and TCAD models.

The evaluation spans device‑level accuracy (Table 6, 
Fig. 6), circuit‑level performance (Table 7, Fig. 7), 
edge‑AI inference metrics (Table 8, Fig. 8), 
stress‑condition robustness (Table 9, Fig. 9), and 
subthreshold/high‑field behaviour (Table 10, Fig. 10). 
Comparisons are made against analytic UTB‑SOI 
models [1]– [6], BSIM‑IMG [5], PSP [14], and TCAD 
simulations [14]– [17]. At the device level, RMSE in 
I_D is reduced to (0.9–2.1%) over 𝑉𝑉𝐺𝐺 = 0.1–1.0 V, 
closely matching TCAD’s (1.3–2.8%) range while 
outperforming BSIM‑IMG (3.5–6.5%), PSP (5.0–9.8%), 
and analytic UTB‑SOI models (6.1–11.5%). Circuit 
benchmarks show ring-oscillator delay and inverter 
power errors of 2.8% and 2.1%, respectively. Compared 
with BSIM-IMG (delay 10.2%, power 8.5%) and TCAD 
(delay 3.1%, power 2.4%), our method demonstrates 
significantly improved circuit-level fidelity. On‑chip 
inference on a Cortex‑M55 achieves 200 µs latency, 
5 kHz throughput, and 0.25 pJ/op energy, demonstrating 
capabilities unattainable by conventional models. Under 
thermal (273–373 K) and radiation (0–100 krad) stress, 
RMSE remains ≤ 1.9%, whereas BSIM‑IMG errors 
exceed 8% at extremes. Subthreshold‑slope error is 

reduced to 53 mV/dec ± 4% and 𝑉𝑉𝑡𝑡ℎ error to 
51 mV ± 2%, with high‑field RMSE of 1.1% at V_D = 
1.2 V, improving upon BSIM‑IMG’s 55 mV/dec ± 10%, 
55 mV ± 8%, and 4.5% RMSE as well as PSP’s reported 
metrics. These results confirm that embedding physics 
into PINNs yields SPICE‑ready models with 
TCAD‑level fidelity, accelerated circuit simulation, and 
suitability for ultra‑low‑power, real‑time edge 
deployment.  

5.6 Comparison with ANN-Only MOSFET Models 

Table 11 contrasts the proposed PINN‑enhanced 
compact model with two recent purely data‑driven ANN 
approaches reported by [34] and [35]. While these ANN 
methods achieve respectable I_D fitting accuracy, they 
do not embed device physics and lack pathways to 
SPICE compatibility or edge‑AI deployment. By 
enforcing Poisson and continuity equations, the PINN 
framework achieves ≤ 2 % RMSE across more than 2000 
bias points, produces BSIM/Verilog‑A parameter sets, 
and executes in real time on a Cortex‑M55 at 
0.25 pJ/op—capabilities not matched by the comparison 
models. 

Table 11. Comparison of purely data-driven ANN MOSFET models with our PINN-enhanced framework. 

Model Physics Embedding RMS I<sub>D</sub> Error 
(%) SPICE-compatibility Edge-AI Latency and Energy 

Wei et al., CSTIC 2020 [34] None (ANN only) 3–5 No Not evaluated 

Liu et al., EDTM 2025 [35] None (ANN only) 4–6 No Not evaluated 

PINN-Enhanced (this work) Poisson and continuity eqns. ≤ 2 Yes (BSIM / Verilog-A) 200 µs and  0.25 pJ/op 

 

6 Conclusion  

This research presents a unified PINN-enhanced 
compact modeling framework that bridges TCAD 
accuracy with SPICE-ready models by embedding 
physics constraints into the training loss and using 
Levenberg–Marquardt fitting for parameter extraction. 
The framework achieves ≤ 2 % RMSE at the device 
level and ≤ 3 % delay error at the circuit level, while 
running much faster than full TCAD simulations. 

Deployment of the quantized ONNX model on a Cortex-
M55 further demonstrates practical edge-AI inference 
with ~200 µs latency and 0.25 pJ/op energy, confirming 
its suitability for real-time, low-power applications. 
Robustness under temperature and radiation stress 
further validates reliability across operating regimes. 
Open‑source datasets and code ensure reproducibility 
and provide a foundation for extending the pipeline to 
FinFETs, GAA devices, and hardware‑accelerated 
inference platforms. 
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